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Abstract: Population migration, especially population inflow from epidemic areas, is a key 
source of the risk related to the coronavirus disease 2019 (COVID-19) epidemic. This paper 
selects Guangdong Province, China, for a case study. It utilizes big data on population mi-
gration and the geospatial analysis technique to develop a model to achieve spatiotemporal 
analysis of COVID-19 risk. The model takes into consideration the risk differential between 
the source cities of population migration as well as the heterogeneity in the socioeconomic 
characteristics of the destination cities of population migration. It further incorporates a 
time-lag process based on the time distribution of the onset of the imported cases. In theory, 
the model will be able to predict the evolutional trend and spatial distribution of the COVID-19 
risk for a certain time period in the future and provide support for advanced planning and 
targeted prevention measures. The research findings indicate the following: (1) The 
COVID-19 epidemic in Guangdong Province reached a turning point on January 29, 2020, 
after which it showed a gradual decreasing trend. (2) Based on the time-lag analysis of the 
onset of the imported cases, it is common for a time interval to exist between case importation 
and illness onset, and the proportion of the cases with an interval of 1–14 days is relatively 
high. (3) There is evident spatial heterogeneity in the epidemic risk; the risk varies signifi-
cantly between different areas based on their imported risk, susceptibility risk, and ability to 
prevent the spread. (4) The degree of connectedness and the scale of population migration 
between Guangdong’s prefecture-level cities and their counterparts in the source regions of 
the epidemic, as well as the transportation and location factors of the cities in Guangdong, 
have a significant impact on the risk classification of the cities in Guangdong. The first-tier 
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cities – Shenzhen and Guangzhou – are high-risk regions. The cities in the Pearl River Delta 
that are adjacent to Shenzhen and Guangzhou, including Dongguan, Foshan, Huizhou, 
Zhuhai, Zhongshan, are medium-risk cities. The eastern, northern, and western parts of 
Guangdong, which are outside of the metropolitan areas of the Pearl River Delta, are con-
sidered to have low risks. Therefore, the government should develop prevention and control 
measures that are specific to different regions based on their risk classification to enable 
targeted prevention and ensure the smooth operation of society. 

Keywords: population migration; COVID-19; epidemic risk; time-lag process; spatiotemporal analysis 

1  Introduction 

In December 2019, the first case of pneumonia of unknown etiology, i.e., coronavirus dis-
ease 2019 (COVID-19), occurred in Wuhan South China Seafood Market (Li et al., 2020a). 
Based on the most updated COVID-19 data from the National Health Commission of China, 
as of March 5, 2020, there had been 80,552 confirmed cases and 3,042 deaths in China. The 
rapid spread of the COVID-19 epidemic constituted an unprecedented emergency. It was 
another public health emergency following the outbreak of severe acute respiratory syn-
drome (SARS) in 2003. Since the COVID-19 outbreak, many scholars have performed sta-
tistical analyses based on classical epidemiological investigations. They have studied the 
emergency response from the perspectives of pathology, epidemiology, genomics, clinical 
medicine, and molecular biology (Huang et al., 2020; Li et al., 2020a; Wu et al., 2020; Zhou 
et al., 2020b) in the hope of sequencing the viral genome and identifying the source of the 
virus, any interim hosts, and factors that affect transmission of the virus. The purpose of the 
above research is to identify the risk potential, transmission mechanism, and risk factors of 
COVID-19 and to provide scientific evidence for the development of test kits and anti-viral 
medicines. The research has gradually yielded some important conclusions, including that 
there exists human-to-human transmission and that the median incubation period is 4.0 days 
(Chan et al., 2020; Chen et al., 2020; Guan et al., 2020). Some researchers have used 
COVID-19 data published by the Chinese governments to build models for forecasting the 
pandemic risk (Yan et al., 2020); others have analyzed the impact on China’s economy to 
make policy recommendations (Duan et al., 2020). Using data on global trade and supply 
chains, Guan et al. evaluated the impact of COVID-19 on the economies of 140 countries 
across the globe based on different scenarios. Their research indicated that the breaking of 
the supply chains and the depressed consumer demand will reduce the output of electronic 
products by China’s manufacturing sector by 13%–15% (Guan et al., 2020a). Given the 
strong infectiousness of the virus, the rapid spread of the epidemic, and its significant impact 
on society and the economy, it is imperative to grasp the spatiotemporal pattern of the spread 
to implement localized, targeted prevention measures and ensure the smooth operation of the 
society. 

This type of infectious disease, which spreads rapidly over a wide area, be it SARS – an-
other coronavirus disease like COVID-19 – influenza caused by the avian influenza virus 
(Cao et al., 2010a), or infection with Zika virus, an arbovirus (Zhang et al., 2017), all result 
from the interaction between complex human factors and natural factors (Dalziel et al., 2018; 
Cao et al., 2010b). Population migration also poses high potential risks of epidemic spread 
(Tian et al., 2018; Zhang et al., 2017). For instance, Dalziel et al. found that the population 
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size and structure as well as humidity in the cities had a strong impact on the intensity of 
influenza in the US during 2003–2008 (Dalziel et al., 2018). Tian et al. (2018) indicated that 
population migration in the urbanization process between 1963 and 2010 had a significant 
impact on the spread of the Hantavirus. Zhang et al. study the spread of the Zika virus in the 
Americas during 2013–2014. They found that the Zika virus was characterized by slow 
growth and significant heterogeneity across different spaces or seasons. Further, mosquitos 
and population migration were the major contributing factors. Building on those findings, 
the researchers forecasted the change patterns of Zika virus in the foreseeable future (Zhang 
et al., 2017). Using big data on population migration and limited real-time information on 
the COVID-19 epidemic, Zhou et al. (2020c) found that the size of the migratory population 
was significantly correlated with the number of confirmed cases.  

Given the human-to-human transmission of COVID-19, before effective vaccines or 
medicines are available, the most effective ways of preventing the spread are still the tradi-
tional measures, including isolating infected persons, tracking close contacts, and restricting 
mass gatherings (Chinazzi et al., 2020; Yang et al., 2020). This type of preventive measure 
that is based on “social distancing” (Shetty, 2009) has proven effective in the prevention of 
the SARS outbreak in 2003 (Peng et al., 2003; Twu et al., 2003; Meng et al., 2005) and the 
spread of influenza A (H1N1) in 2009 (Cao et al., 2010a). Of the many studies on SARS and 
H1N1, in addition to the mainstream research based on pathology and epidemiology, there is 
also some research that is based on geography (Wang et al., 2003; Ding et al., 2004; Han et 
al., 2004). This type of research focuses on the spatial-distance aspect of the spread of epi-
demics. Other researchers have used the spatial address information of the infected persons 
to analyze the spatial configuration of the epidemic outbreaks and the spatiotemporal pat-
terns of the epidemic spread. They conclude that spatial spread is inextricably correlated 
with population distribution, the environment, the distribution of hospitals, and other spatial 
factors (Cao et al., 2008; Cao et al., 2010a). However, the above research has mainly fo-
cused on samples of infected persons. Research on the impact of large-scale and 
high-frequency population migration on the transmission and spread of the epidemic is still 
lacking. 

Nevertheless, the potential risk of COVID-19 spread due to population migration has 
caught the attention of Chinese governments. After Wuhan “shut down” its entire city on 
January 23, 2020, to block the spread of the epidemic, other prefecture-level cities (referred 
to as “cities” in the rest of the paper) in Hubei Province implemented the same lockdown 
measure, including Huanggang, Jingmen, Xiaogan, and Ezhou. However, before the lock-
down, more than 5 million residents or visitors had left Wuhan for places across China, be-
coming potential spreaders of the virus. The existing confirmed cases in other provinces are 
all related to this population migration. 

With the rapid advancement and popularization of the internet and mobile devices, using 
big data to realize emergency situational awareness and decision-making support (Zhou et 
al., 2020a) has become an effective approach to social governance. Vittoria et al. (2006) 
attempted to build a model for forecasting infectious diseases globally by using aviation 
transportation network data. Geng et al. (2016) used the civil aviation data of South Korea 
during June 2014 to retrospectively evaluate the relative probability of imported Middle East 
Respiratory Syndrome epidemics in the destination cities of Korean visitors to China. Zhou 
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et al. (2020a) concluded that geographic information system (GIS) and big data technologies 
have played an important role in fighting the COVID-19 pandemic. Particularly, big data on 
population mobility from multiple sources (Buckee et al., 2020) (such as population migra-
tion data and real-time population migration data) have considerable advantages over data 
obtained through traditional epidemiological investigations in facilitating quick estimates of 
population mobility and spatial distribution, in space-based epidemic risk classification, and 
in determining the level of prevention needed (Zhou et al., 2020a).  

This study focuses on the COVID-19 risk posed by the population that came (or returned) 
to Guangdong during the 2020 Spring Festival period. It uses the population migration big 
data and the GIS spatial analysis technology, takes into consideration the risk differential 
among source regions of the population inflows as well as the socioeconomic disparities 
between the receiving regions of population migration, and constructs a model for analyzing 
the spatiotemporal distribution of the epidemic risk in Guangdong from the perspectives of 
risk input and diffusion. The model can be used to reveal the spatiotemporal evolution of the 
potential epidemic spread risk imposed by the migrating population from Hubei Province. 
The overall purpose of this study is to use Guangdong’s experience as an example to facili-
tate the development and implementation of prevention measures that are specific to differ-
ent regions based on their risk classification and support decision making for preventing the 
spread of COVID-19 in China. 

2  Research methods and data sources 

2.1  Overview of the study area and research framework 

Guangdong boasts the largest mobile population in China. It has a total out-of-province mi-
gratory labor force of 16.69 million, of whom 2 million are from Hubei. According to the 
internet population migration index, it is estimated that between January 25, 2020 and Feb-
ruary 6, 2020, a total of 190,000 people came to Guangdong from Hubei. The period of 
January 25 – January 29 saw the most population migration. The main source cities of the 
migration included Wuhan, Jingzhou, Xiangyang, Huanggang, Xiaogan, Suizhou, and Xian-
ning, accounting for 85% of the total population that moved from Hubei to Guangdong. The 
major population-receiving cities in Guangdong were Shenzhen, Dongguan, Guangzhou, 
Foshan, Huizhou, and Zhongshan, accounting for 91% of the inflow population from Hubei. 
As of March 5, 2020, the total number of confirmed COVID-19 cases in Guangdong reached 
1351, second only to Hubei’s 67,592 cases. Cases imported from Hubei accounted for the 
vast majority of the confirmed cases, and diffusion was mainly due to family gatherings. 
Therefore, preventing importing cases from outside Guangdong and diffusion within the 
province is still the basic strategy of containing the epidemic in Guangdong. 

Based on the above basic prevention and control strategy, this paper develops an analytic 
framework from the perspectives of risk input and diffusion: (1) Using the big data of popu-
lation migration and the geospatial analysis technique, the paper introduces the indicators of 
imported risk and diffusion risk to develop the spatiotemporal analytical model for the 
COVID-19 risk in Guangdong. (2) Based on the interval distribution of the onset of the im-
ported cases, a lag period is further incorporated into the model to construct a spatiotemporal 
analytical model that takes into consideration the time-lag effect. The goal is to analyze and 
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forecast the evolution patterns and spatiotemporal configuration of the COVID-19 risk. The 
research framework is illustrated in Figure 1. 
 

 
 

Figure 1  Research framework 
 

2.2  Data sources 

Data for the matrix of population migration from cities in Hubei to cities in Guangdong are 
based on mobile phone signaling data supplied by mobile service providers. Mobile phone 
numbers from Hubei were tracked for their movement to ascertain the population that mi-
grated into each city in Guangdong. The incidence rates in cities in Hubei come from the 
data published daily by the National Health Commission of China. The sizes of the perma-
nent and mobile populations and the numbers of health care institutions, hospital beds, 
health care workers, and registered physicians were obtained from the statistical yearbooks 
of the cities in Guangdong. The number of industrial firms was taken from the China Indus-
trial Enterprise Database; the spatial distribution of the firms was obtained through spatial 
geocoding. Traffic-volume data were based on the real-time information regarding toll col-
lection by the expressway network. The epidemiological data on confirmed cases are based 
on information published by Shenzhen Health Commission (SHC) as of March 5, 2020, re-
garding 416 patients who contacted COVID-19. The information includes the date when 
each patient came to Shenzhen and the date of illness onset. 

2.3  Research methods 

2.3.1  Imported risk 

To measure the size of the inflow population and to classify the risk levels of source cities, 
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this study uses the matrix of population migration from cities in Hubei to cities in Guang-
dong and the incidence rates of cities in Hubei as indicators, respectively. Given Hubei was 
the source region with the most serious epidemic, the inflow population from Hubei is 
viewed as the imported risk. Further, considering the spatial heterogeneity in the intensity of 
the epidemic across cities in Hubei, the incidence rates of these cities are used as the weight 
of the imported risk. The imported risk (Riskinput, person) calculated in Figure 1 mainly re-
flects the imported risk posed by the inflow population between January 1, 2020 and Febru-
ary 29, 2020 around the Chinese New Year. A matrix of population migration from cities in 
Hubei to their counterparts in Guangdong is developed. The risk classification for the source 
cities (incidence rates of cities in Hubei) is then incorporated into the matrix to formulate the 
imported risk matrix: 
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where P denotes the matrix of daily population (people) migration from cities in Hubei to 
cities in Guangdong; the matrix contains Pij where i =1, 2, …21 denotes the 21 prefec-

ture-level cities in Guangdong, and j=1, 2, …17 denotes the 17 prefecture-level cities in 

Hubei; j is the j1 column vector denoting the incidence rates of cities in Hubei. Based on 
the COVID-19 data released by the Health Commission of various governments, the inci-
dence rates for Hubei were first determined. The determination of the imported risk is the 
key for Guangdong to prevent imported COVID-19. 

2.3.2  Time-lag effect of imported risk 

The characteristics of COVID-19, e.g., infectivity during the latent period, are correlated 
with the number of newly confirmed cases and the number of new infections (Li et al., 
2020b). As such, in determining the imported risk, parameters that reflect the time-lag effect 
are required to more accurately describe the spatiotemporal patterns of COVID-19 spread in 
Guangdong. As Shenzhen is the most representative city of Guangdong, we use the data on 
the COVID-19 cases in Shenzhen for the analysis (Table 1). A probabilistic statistical analy-
sis is performed to examine all imported cases and determine the time span from a case be-
ing imported into Guangdong to illness onset, so we can determine the distribution of this 
time lag. The estimated time lag is incorporated into the model upon parameter inversion 
and adjustments to more effectively simulate the evolution of the epidemic and forecast its 
patterns in the future.  

The lag between the import of a case and illness onset is denoted by f(t). Then all the cas-
es confirmed before time t are from patients infected before t-f(t) (Yan et al., 2020). The 
probability distribution of the lag period f(t) is denoted by qf(t). Ultimately, the imported risk 
of the epidemic in different places can be obtained, as can the impact of the risk of its spread 
across different regions. The impact of the spread risk of all the regions can be superimposed 

on each other to obtain the risk value of each regions outbreak in the spatial dimension, and 
the change in epidemic risk in each region over time in the temporal dimension can also be 
obtained. That is: 
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Table 1  Explanation of some variables 

Variable  Explanation Value range and type 

Case number Released by Shenzhen Health Commission   

Sex Patient’s sex Male/female 

Age Patient’s age Integer, 0–100 

Place of residency Province-City, e.g., Guangdong-Shenzhen   

Time in Wuhan Time period, YYYY/MM/DD-YYYY/MM/DD Data/time period 

Time of arrival at 
Shenzhen 

YYYY/MM/DD Date 

Time of illness onset YYYY/MM/DD Date 

Cause of infection 

0: Resided in or visited Wuhan; 1: Resided in or visited a place in 
Hubei outside of Wuhan 2: Had close contact with a person who 
resided in or visited Hubei but did not reside in or visit Hubei; 3: 
Had close contact with a confirmed case but did not reside in or 
visit Hubei; NA: Unknown 

0/1/2/3/NA 

 

2.3.3  Diffusion risk 

The diffusion risk is illustrated in Figure 1 ( diffusionRisk , person). This study considers the 

fundamental conditions for diffusion in the cities and divides the diffusion risk into two as-
pects: the susceptibility risk and prevention risk: 

 
i i

diffusion input diffusionRisk Risk  
 

 (3) 

where j
diffusionRisk denotes the size of population (people) that may contract COVID-19 in city 

i of Guangdong; i
inputRisk denotes the imported risk posed by the population from Hubei to 

city i of Guangdong (people); i
diffusion is the diffusion risk coefficient of city j in Guangdong, 

where 

 -1 -2=i i i
diffusion diffusion diffusion  

 
 (4) 

where 1
i
diffusion  denotes the susceptibility risk coefficient of city i in Guangdong, and 

2
i
diffusion  denotes the prevention risk coefficient of city j in Guangdong. Indicators for sus-

ceptibility and prevention are selected based on the available results (Table 2). The suscepti-
bility indicators have more to do with factors related to population mobility. Large popula-
tion sizes and high mobility increase the chances of person-to-person contact (Zhao et al., 
2020). The transportation network and traffic volume can further accelerate the spread of 
infectious diseases (Colizza et al., 2006; Geng et al., 2016). This study further incorporates 
the number of firms in the industrial sector into the model, the purpose of which is to exam-
ine the impact of reopening the economy in the Pearl River Delta region – a national manu-
facturing base – on the spread of COVID-19. The susceptibility indicators include the size of 



1992  Journal of Geographical Sciences 

 

the local population, the size of the mobile population, the number of firms in the industrial 
sector, the traffic volume, and whether the city has an airport. These indicators should posi-
tively impact the spread of COVID-19. Prevention indicators have more to do with health 
care infrastructure. They include the number of health care institutions, number of hospital 
beds, and number of registered physicians. These indicators represent the capacity to prevent 
the spread of the epidemic and should negatively impact the spread. The relative coeffi-

cients 1
i
diffusion  and 2

i
diffusion  are derived after the susceptibility and prevention indicators 

are standardized. 
 

Table 2  Statistical analysis of the indicator variables 

Variable Unit 
Minimum 

value 
Maximum 

value 
Mean 

Standard  
deviation 

Size of permanent population 10,000 person 189.1100 1490.4400 540.2857  340.7044  

Size of mobile population 10,000 person 15.5563 875.4548 155.5160  233.0246  

Number of health care institutions   838.0000 4598.0000 2453.6667  1067.6306  

Number of hospital beds   6682.0000 95134.0000 24617.7619  19017.7786  

Number of health care workers   13666.0000 188695.0000 43890.6190  40236.0240  

Number of industrial firms   244.0000 7937.0000 2328.7143  2600.5551  

Is there an airport / 0  1  0.3810  0.4976  

Traffic volume 10,000 vehicles 2189.95 107122.2201 18495.63725 27728.30962 
 

2.3.4  Epidemic risk 

The formula for epidemic risk is 

 
= = = +i i i i i i i i

input diffusion input input diffusion input diffusionRisk Risk Risk Risk Risk Risk    （1 ）
 

(5) 

where iRisk denotes the overall epidemic risk of city i in Guangdong. This total risk calcula-
tion takes into consideration the imported risk and diffusion risk. 

3  Spatiotemporal analysis of the COVID-19 risk in Guangdong from a 
geographic perspective 

3.1  Time lag between case import and illness onset of imported cases 

Since the novel coronavirus that caused the COVID-19 epidemic can be infectious during 
the latent period, after the imported risk is determined, we need to apply parameters that 
account for the time-lag effect to adjust the time distribution of the COVID-19 spread in 
Guangdong. Based on the review of imported cases in Shenzhen, we find that there is gener-
ally a common interval between the import of a case and the onset of illness. We examine 
this time interval for each imported case in Shenzhen and calculate the probability distribu-
tion of the time-lag period (Figure 2). The statistics indicate that 30.45% of the imported 
cases had a lag period of 0 days (illness onset occurred before or on the date the patient 
came to Shenzhen). If these cases could be identified and quarantined in a timely manner 
upon their entry into Shenzhen, the spread of the virus by them would be effectively con-
tained. The imported cases that had a lag period of 1–14 days account for 65.38% of all 
cases. The 14-day isolation period, if properly implemented, would effectively prevent these  
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patients from further spreading the virus. 
The rest of the cases had a lag period of 15 
days and longer, the longest being 21 days. 
Although these cases only account for 
4.17% of all cases, given that the 14-day 
isolation period is widely applied to mobile 
population across China, it is evident that 
existing measures would be insufficient to 
contain their spread of COVID-19 by epi-
demic diffusion. This issue deserves more 
attention. 

3.2  Spatiotemporal distribution of imported risk 

Taking into account the time interval of disease onset among the imported cases, the daily 
imported risk for each city in Guangdong is calculated using formula (1). Then the imported 
risk is adjusted through formula (2), whereby the probability distribution of the lag period of 
cases imported into Shenzhen is used as the weight for the adjustment. The results are pre-
sented in Figure 3. A review of the population inflow indicates that, during the early stage of 
the virus transmission – the Chinese New Year period – the migration from Hubei to cities of 
Guangdong was consistent with historical trends, and the confirmed cases in each province 
had a strong positive correlation with the number of people flowing from Wuhan into that 
province (Zhou et al., 2020a). The population that migrated from Hubei to Guangdong was  

 

 
 

Figure 3  Trends of daily imported risk (Riskinput) of the COVID-19 epidemic in various cities in Guangdong 
Province 

 
 

Figure 2  Probability distribution qf(t) of the lag period 
of COVID-19 cases imported into Shenzhen 
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mainly from Wuhan, Jingzhou, Huanggang, and Xiangyang; the main destination cities in 
Guangdong included Shenzhen, Guangzhou, Dongguan, Foshan, and Huizhou. Imported 
cases were mainly concentrated in the core cities of the metropolitan area in the Pearl River 
Delta region. 

The daily imported risk can be roughly divided into three phases: (1) January 1 – January 
10, 2020: the daily imported risk grew rapidly, especially in Shenzhen and Guangzhou. (2) 
January 10 – January 23, 2020: the daily imported risk fluctuated but overall was on the de-
cline. (3) The daily imported risk declined dramatically. A before-and-after analysis intui-
tively indicates that the shutdown of Wuhan, a compulsory measure restricting population 
mobility, on January 23, 2020, played a significant part in breaking the spread of the pan-
demic. 

The cumulative imported risk is shown in Figure 4. Guangzhou and Shenzhen accounted 
for most of the cumulative imported risk in Guangdong due to the significant daily imported 
risk of the two cities. The cumulative imported risk of the cities in Guangdong can be di-
vided into two phases: (1) January 1 – January 10, 2020: the cumulative imported risk grew 
rapidly. (2) After January 29, 2020, the cumulative imported risk grew slowly. After the 
shutdown of cities in Hubei on January 23, 2020, the cumulative imported risk reached the 
theoretical turning point on January 29, 2020. This period was a key window to prevent and 
control the outbreak of the imported epidemic. 
 

 
 

Figure 4  Cumulative imported risk (Riskinput) situation of various cities in Guangdong Province 

 
The results of the spatial analysis of the imported risk are shown in Figure 5. Shenzhen 

and Guangzhou are the regions with high imported risks. These cities have a permanent 
population of over 10 million. They had a large population inflow from Hubei around the 
Chinese New Year and therefore high imported risks. Cities with medium imported risks 
include Dongguan, Foshan, Huizhou, Zhuhai, and Zhongshan, which are mainly in the Pearl  
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Figure 5  Spatial distribution of cumulative imported risks by city (Guangdong Province) 

 
River Delta metropolitan area. These cities belong to the second echelon of cities in the 
Pearl River Delta metropolitan area in terms of population and the size of the economy. Cit-
ies with a low imported risk include Jiangmen, Zhanjiang, Shaoguan, Qingyuan, Chaozhou, 
Shantou, Shanwei, Zhaoqing, Meizhou, Maoming, Jieyang, Heyuan, Yunfu, and Yangjiang; 
these cities are mainly located in the eastern, western, and northern parts of Guangdong, 
outside of the Pearl River Delta metropolitan area. The degrees of population aggregation 
and economic vitality in these cities are significantly lower than those in the Pearl River 
Delta region, so their imported risks are low.  

3.3  Diffusion risk coefficient 

The spatial analysis of the susceptibility and prevention indicators indicates that both types 
of indicators have significant spatial heterogeneity. The heterogeneity of the susceptibility 
indicators is mainly demonstrated by the following facts: The permanent population is 
mainly clustered in the metropolitan cities of the Pearl River Delta and the core cities in 
eastern and western Guangdong. The mobile population is mainly concentrated in Shenzhen, 
Guangzhou, and Dongguan. Industrial firms are mainly located in the core cities of the Pearl 
River Delta metropolitan area surrounding the Pearl River estuary. And the traffic volume is 
mainly concentrated in the metropolitan cities of the Pearl River Delta.  

The heterogeneity of the prevention indicators is demonstrated by the fact that health care 
workers are mainly concentrated in the metropolitan cities of the Pearl River Delta, espe-
cially Guangzhou, Shenzhen, Foshan, and Dongguan. Spatial heterogeneity in health care 
institutions and hospital beds is less significant. The spatial analysis of the diffusion risk 
coefficient indicates that the global Moran’s I of the risk coefficient is positive, I=0.6363, 
corresponding to a standardized statistic Z=5.2026 and a significance level P of 0.0000. The 
diffusion risk demonstrates high-level heterogeneity. 
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Based on the analysis of the susceptibility risk coefficients and prevention risk coeffi-
cients, the diffusion risk coefficients for the cities across Guangdong are calculated based on 
formula (4). The diffusion risk coefficient has significant spatial heterogeneity due to the 
differences in population, industrialization, and traffic volume across the cities (Figure 6). 
Shenzhen, Guangzhou, Foshan, and Dongguan, where both the susceptibility risk coefficient 
and prevention risk coefficient are high, have high diffusion risk coefficients. All these cities 
are located in the Pearl River Delta metropolitan area. Cities outside of this area in eastern, 
western, and northern Guangdong have relatively low diffusion risk coefficients. 

 

 
 

Figure 6  Spatiotemporal distribution of diffusion risk coefficients in cities across Guangdong 
 

3.4  Analysis of the spatiotemporal evolution of the epidemic risk 

Based on formula (5) and the lag period of the imported cases, the daily diffusion risks of 
the cities across Guangdong are shown in Figure 7. The evolution of the daily diffusion risks 
is highly consistent with that of the daily imported risk, and they experienced three phases. 
The daily diffusion risk of Guangdong also mainly consists of the daily diffusion risks of 
Shenzhen and Guangzhou. After January 26, 2020, the daily diffusion risks all declined 
rapidly. 

The diffusion risk and imported risk show significant spatial heterogeneity. Specifically, 
the simulated epidemic growth process of the cities in Guangdong demonstrates temporal 
heterogeneity. During the early period of COVID-19 spread, cities with high population mo-
bility and a high concentration of industrial firms had a higher growth rate of confirmed 
cases. For instance, from January 1, 2020, the daily diffusion risk of Guangzhou and Shenz-
hen grew through January 9, after which it started to decline, with fluctuations. During the 
middle and late stages of the COVID-19 spread, the diffusion risk declined rapidly. These 
results suggest that, while these cities had higher diffusion risks during the early phase of the 
epidemic spread, they also had higher prevention risk coefficients and could still 
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Figure 7  Daily diffusion risk (Riskdiffusion) of cities across Guangdong Province 
 

reduce imported cases through effective prevention measures. Foshan, Dongguan, and Zhu-
hai experienced similar evolution patterns to those of Shenzhen and Guangzhou. Some cities, 
such as Huizhou and Zhongshan, had few imported cases and a low growth rate at the early 
stage of the epidemic, but they experienced significant growth in imported cases during the 
middle stage of the epidemic, indicating these cities had higher diffusion risks during this 
middle stage. Other cities had few imported cases during the early stage of the epidemic and 
did not experience rapid growth during the entire epidemic, mainly because they had lower 
diffusion risk coefficients. 

Based on the daily diffusion risk of cities in Guangdong, the cumulative risk of these cit-
ies is calculated (Figures 8 and 9). The analysis of the simulated diffusion risk coefficient 
indicates that, in theory, Guangdong has passed the turning point of the COVID-19 epidemic. 
On January 29, 2020, the cumulative diffusion risks of the cities reached the theoretical 
turning point. The cumulative diffusion risks were mainly concentrated in the Pearl River 
Delta metropolitan area, especially in the cities of Shenzhen, Guangzhou, Dongguan, Foshan, 
Zhuhai, and Huizhou. However, given the high concentration of industrial firms in the Pearl 
River Delta region, there is still a risk that, after the economy is reopened, the migratory 
workers from Hubei will bring a second wave of diffusion risk, especially in the cities where 
a higher diffusion risk existed early in the epidemic. 

4  Conclusion and discussion 

4.1  Conclusion 

Population mobility, especially population inflows from epidemic areas, has been the main 
source of the spread of the COVID-19 epidemic. This paper focuses on the epidemic risk 
posed by Guangdong’s migratory population, utilizes big data on population migration, and  
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Figure 8  Cumulative diffusion risk (Riskdiffusion) status in cities across Guangdong 
 

 
 
Figure 9  Spatiotemporal distribution of cumulative diffusion risk across cities in Guangdong Province 

 
applies the geospatial analysis technique to develop a model to perform spatiotemporal ana-
lyses of COVID-19 risk. The model takes into consideration the risk differential between the 
source cities of population migration, as well as the heterogeneity in the socioeconomic 
characteristics of the destination cities. It further incorporates a time-lag process based on 
the time period of imported COVID-19 cases. In theory, the model will be able to predict the 
trend of the evolution and spatial distribution of COVID-19 risk for a certain time period in 
the future, as well as provide support for advanced planning and targeted prevention. 

The results of the simulated imported risks and diffusion risks indicate that the COVID- 
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19 epidemic in Guangdong passed the turning point on January 29, 2020 and entered a stable 
stage. Based on the probability distribution of the lag period of imported COVID-19 cases, 
the common practice of 14-day isolation of migratory populations adopted across China is 
effective for most confirmed cases or virus carriers. The lag period for a few cases or virus 
carriers is more than 14 days, so consideration should be given to extending the isolation 
period. The simulated results for the imported risk and diffusion risk indicate that there is 
significant spatiotemporal heterogeneity in the COVID-19 epidemic risk in Guangdong; the 
risk varies considerably between cities depending on the imported risk, susceptibility risk, 
and prevention risk. Shenzhen and Guangzhou are the high-risk regions; other cities in the 
Pearl River Delta, including Dongguan, Foshan, Huizhou, Zhuhai, and Zhongshan, have 
medium risks; and the cities in eastern, western, and northern ports of Guangdong that are 
outside of the Pearl River Delta have low risks. 

4.2  Discussion 

With a new infectious disease, it usually takes a long time for specific vaccines and medical 
treatment that fundamentally cure the disease to be developed. At this time, direct and effec-
tive emergency prevention and control measures are still isolation prevention and control 
strategies based on population flow restriction. Tian et al. found that, during the first 50 days 
of the COVID-19 epidemic in China, the measures adopted by Wuhan and other provinces 
and direct-administered municipalities to restrict population mobility broke the spread of the 
epidemic across China to a certain extent and prevented over 700,000 cases that otherwise 
would have occurred. The shutdown of Wuhan reduced the time during which the epidemic 
would have spread to other cities by 2.91 days (Tian et al., 2020). Although the measures to 
prevent imported cases and diffusion within the area have achieved clear results, it is still 
important to fully understand the mechanism through which COVID-19 spreads as well as 
the complex factors that affect its spread. With the reopening of the economy, people will 
move around more frequently, and the methods of preventing importation and diffusion of 
the virus within the area will face tremendous challenges. The COVID-19 spread will shift 
from being family gathering–based to workplace-based, and difficulties in preventing the 
disease will increase. For these reasons, there is a need to strengthen the measures of isolat-
ing workers from Hubei or other areas with a high COVID-19 risk. 

The negative impacts of restricting population mobility on productivity, peoples’ daily 
lives, and the economy should not be ignored. Therefore, it is imperative to effectively grasp 
the spatiotemporal pattern of the spread and implement hierarchical prevention measures 
based on the spatial heterogeneity of the risk so as to achieve localized, targeted prevention 
and ensure the smooth operation of society. Currently, the most commonly employed model 
for COVID-19 risk is the susceptible-exposed-infectious-recovered model. Its main idea is 
to divide the population into the suspected high-risk population, the exposed population, the 
infected population, and the recovered population and identify the pattern of spread by ex-
amining the mechanism through which the disease is transmitted from one group to another. 
It has a high requirement for its parameters. This paper only considers the exposed popula-
tion and infected population, which is a limitation of the paper: On one hand, this decision 
was due to the insufficiency of available data; on the other, the goal that guided this research 
was to realize spatial division of the COVID-19 risk and differentiated adoption of preven-
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tion levels, and this is why the paper focuses on infected population, an important indicator 
for evaluating the epidemic situation.  

Further, this study incorporates the accurate incidence rates of the cities in Hubei, the lag 
period of the imported cases, the risk differential between source regions for population mi-
gration, and the variance in the socioeconomic situations of the destination regions, to make 
up for the above-mentioned deficiency in epidemic risk analysis. In addition, this paper does 
not consider the potential impact of undocumented infected cases. The existence of a large 
number of such asymptomatic virus carriers who can be super spreaders may cause rapid 
spread of the COVID-19 virus (Li et al., 2020b). Knowing more about the undocumented 
cases is vital to fully understanding the overall incidence rate of COVID-19. This requires 
fundamental improvement of the COVID-19 testing methods and expansion of the testing 
scope to asymptomatic patients. 

In summary, amid a major public health emergency such as COVID-19, emergency man-
agement and control usually incorporate expertise from multiple disciplines, such as pa-
thology, epidemiology, geoinformatics, psychology, and behavioral sciences. This paper in-
tegrates epidemiology and geoinformatics and performs some seminal work in modeling the 
spatiotemporal distribution of COVID-19 epidemic risk. Limited by data availability, how-
ever, the analysis is only performed on prefecture-level cities. In fact, with the internet and 
the almost 100% coverage of cell phone signaling, it is completely possible, through geoin-
formation techniques, to accurately mine the data of key activity trajectories and activity 
hotspots of key groups of people and set the level of prevention measures on the inflow 
population using communities, enterprises, and institutions as the unit. This would alleviate 
the socioeconomic losses due to excessive prevention and control measures. Therefore, in 
the future, while ensuring that privacy is strictly protected and confidentiality protocols are 
followed, it is worthwhile to explore methods and systems for targeted prevention and con-
trol by making full use of large spatial data such as cell phone signals and improving the 
detection level of asymptomatic cases.  

At present, the epidemic situation of COVID-19 has shown a global trend. An approach 
that integrates elements of coordination, classification, and collaboration (Zhao et al., 2020) 
and scientific support from the GIS and big data technologies (Zhou et al., 2020a) helped 
China earn tremendous successes in fighting COVID-19. These strategies as well as locally 
implemented best practices in China are worth adopting globally. 

References 

Buckee C O, Balsari S, Chan J et al., 2020. Aggregated mobility data could help fight COVID-19. Science, 

368(6487): 145–146. 

Cao Zhidong, Wang Jingfeng, Gao Yige et al., 2008. Risk factors and autocorrelation characteristics on severe 

acute respiratory syndrome in Guangzhou. Acta Geographica Sinica, 63(9): 981–993. (in Chinese) 

Cao Zhidong, Zeng Dajun, Wang Quanyi et al., 2010a. Epidemiological features and spatio-temporal evolution in 

the early phase of the Beijing H1N1 epidemic. Acta Geographica Sinica, 65(3): 361–368. (in Chinese) 

Cao Zhidong, Zeng Dajun, Zheng Xiaolong et al., 2010b. Spatio-temporal evolution of Beijing 2003 SARS epi-

demic. Scientia Sinica (Terrae), 40(6): 776–788. (in Chinese) 

Chan J F-W, Yuan S, Kok K-H et al., 2020. A familial cluster of pneumonia associated with the 2019 novel coro-

navirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223): 514–523. 



YE Yuyao et al.: Spatiotemporal analysis of COVID-19 risk in Guangdong Province based on population 2001 

 

 

Chen N, Zhou M, Dong X et al., 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel 

coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223): 507–513. 

Chinazzi M, Davis J T, Ajelli M et al., 2020. The effect of travel restrictions on the spread of the 2019 novel co-

ronavirus (COVID-19) outbreak. Science, 368(6489): 395–400. 

Dalziel B D, Kissler S, Gog J R et al., 2018. Urbanization and humidity shape the intensity of influenza epidemics 

in U.S. cities. Science, 362(6410): 75–79. 

Ding Sibao, Zhao Wei, Xiang Wei, 2004. Analyzing SARS: Geographical diffusion and hindrance in China. Hu-

man Geography, 19(2): 74–78. (in Chinese) 

Duan H, Wang S, Yang C, 2020. Coronavirus: Limit short-term economic damage. Nature, 578(7796): 515. 

Geng Mengjie, Kamran KHAN, Ren Xiang et al., 2016. Assessing the risk of MERS importation from South 

Korea into cities of China: A retrospective study. Chinese Science Bulletin, 61(9): 1016–1024. (in Chinese) 

Guan W-J, Ni Z-Y, Hu Y et al., 2020. Clinical characteristics of coronavirus disease 2019 in China. New England 

Journal of Medicine, 382(18): 1708–1720. 

Han Weiguo, Wang Jingfeng, Liu Xuhua, 2004. Back analyzing parameters and parameters and predicting trend of 

SARS transmission. Advances in Earth Science, 19(6): 925–930. (in Chinese) 

Huang C, Wang Y, Li X et al., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, 

China. Lancet, 395(10223): 497–506. 

Li Q, Guan X, Wu P et al., 2020a. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected 

pneumonia. New England Journal of Medicine, 382(13): 1199–1207. 

Li R, Pei S, Chen B et al., 2020b. Substantial undocumented infection facilitates the rapid dissemination of novel 

coronavirus (SARS-CoV-2). Science, 368(6490): 489–493. 

Meng B, Wang J, Liu J et al., 2005. Understanding the spatial diffusion process of severe acute respiratory syn-

drome in Beijing. Public Health, 119(12): 1080–1087. 

Peng P W H, Wong D T, Bevan D et al., 2003. Infection control and anesthesia: Lessons learned from the Toronto 

SARS outbreak. Canadian Journal of Anesthesia, 50(10): 989–997. 

Twu S J, Chen T J, Chen C J et al., 2003. Control measures for severe acute respiratory syndrome (SARS) in 

Taiwan. Emerging Infectious Diseases, 9(6): 718–720.  

Wang Zheng, Cai Di, Li Shan et al., 2003. On season risk of the prevalence of SARS in China. Geographical 

Reasearch, 22(5): 541–550. (in Chinese) 

Wu F, Zhao S, Yu B et al., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 

579(7798): 265–269. 

Yan Yue, Chen Yu, Liu Keji et al., 2020. Modeling and prediction for the trend of outbreak of NCP based on a 

time-delay dynamic system. Sci. Sin. Math., 50(3): 385–392. (in Chinese) 

Yang Z, Zeng Z, Wang K et al., 2020. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in 

China under public health interventions. J. Thorac. Dis., 12(3): 165–174. 

Zhou C, Su F, Pei T et al., 2020a. COVID-19: Challenges to GIS with big data. Geography and Sustainability, 

1(1): 77–87. 

Zhou P, Yang X-L, Wang X-G et al., 2020b. A pneumonia outbreak associated with a new coronavirus of probable 

bat origin. Nature, 579(7798): 270–273. 

Zhou Chenghu, Pei Tao, Du Yuyan et al., 2020c. Big data analysis on COVID-19 epidemic and suggestions on 

regional prevention and control policy. Bulletin of Chinese Academy of Sciences, 35(2): 200–203. (in Chinese) 

 


